
The Complete LLM Engineer's Handbook: From Conceptualization to Production of Large Language Models
Sammy Oneal
This audiobook is narrated by a digital voice.
The world of Large Language Models (LLMs) is rapidly evolving, transforming industries and redefining the boundaries of artificial intelligence. "The Complete LLM Engineer's Handbook: From Conceptualization to Production of Large Language Models" is your comprehensive guide to understanding and mastering this cutting-edge technology. This book offers a thorough exploration of LLMs, from their foundational concepts to their practical applications in real-world scenarios. Whether you are a seasoned engineer, a curious researcher, or a tech enthusiast, this handbook is designed to equip you with the knowledge and skills needed to navigate the complexities of LLMs. This book delves into the intricate process of developing and deploying LLMs, providing a step-by-step approach that covers everything from the initial conceptualization to the final production stages. Readers will gain insights into the theoretical underpinnings of LLMs, including the latest advancements in natural language processing and machine learning. Practical examples and case studies are interspersed throughout the text, illustrating how these models can be fine-tuned and optimized for various applications, such as chatbots, content generation, and data analysis.
Duration - 6h 3m.
Author - Sammy Oneal.
Narrator - Digital Voice Ava G.
Published Date - Sunday, 26 January 2025.
Copyright - © 2025 Shandi Gallo ©.
Location:
United States
Description:
This audiobook is narrated by a digital voice. The world of Large Language Models (LLMs) is rapidly evolving, transforming industries and redefining the boundaries of artificial intelligence. "The Complete LLM Engineer's Handbook: From Conceptualization to Production of Large Language Models" is your comprehensive guide to understanding and mastering this cutting-edge technology. This book offers a thorough exploration of LLMs, from their foundational concepts to their practical applications in real-world scenarios. Whether you are a seasoned engineer, a curious researcher, or a tech enthusiast, this handbook is designed to equip you with the knowledge and skills needed to navigate the complexities of LLMs. This book delves into the intricate process of developing and deploying LLMs, providing a step-by-step approach that covers everything from the initial conceptualization to the final production stages. Readers will gain insights into the theoretical underpinnings of LLMs, including the latest advancements in natural language processing and machine learning. Practical examples and case studies are interspersed throughout the text, illustrating how these models can be fine-tuned and optimized for various applications, such as chatbots, content generation, and data analysis. Duration - 6h 3m. Author - Sammy Oneal. Narrator - Digital Voice Ava G. Published Date - Sunday, 26 January 2025. Copyright - © 2025 Shandi Gallo ©.
Language:
English
Chapter 1: Introduction to Large Language Models 4
Duración:00:00:05
1.1 Definition and Importance of Large Language Models (LLMs) 4
Duración:00:07:41
1.2 Brief History and Evolution of LLMs 9
Duración:00:07:59
1.3 Key Applications of LLMs in Industry 15
Duración:00:17:38
Chapter 2: Understanding the Basics of LLMs 28
Duración:00:00:05
2.1 Core Concepts and Terminology 28
Duración:00:07:13
2.2 How LLMs Differ from Traditional NLP Models 33
Duración:00:09:28
2.3 The Role of Deep Learning in LLMs 39
Duración:00:07:41
Chapter 3: Architectures of Large Language Models 46
Duración:00:00:05
3.1 Overview of Common Architectures 46
Duración:00:08:21
3.2 Transformers and Self-Attention Mechanism 52
Duración:00:09:09
3.3 Variants of Transformer Models 58
Duración:00:09:17
Chapter 4: Data Preparation for LLMs 65
Duración:00:00:05
4.1 Data Collection Strategies 65
Duración:00:08:01
4.2 Data Cleaning and Preprocessing Techniques 70
Duración:00:06:52
4.3 Handling Large-Scale Datasets 75
Duración:00:06:40
Chapter 5: Training Large Language Models 81
Duración:00:00:04
5.1 Overview of Training Processes 81
Duración:00:06:17
5.2 Hyperparameter Tuning and Optimization 86
Duración:00:08:13
5.3 Hardware and Infrastructure Requirements 91
Duración:00:09:15
Chapter 6: Fine-Tuning and Transfer Learning 99
Duración:00:00:04
6.1 Fine-Tuning Pre-trained Models 99
Duración:00:07:31
6.2 Transfer Learning Techniques 104
Duración:00:06:54
6.3 Case Studies of Successful Fine-Tuning 109
Duración:00:08:36
Chapter 7: Evaluating Large Language Models 116
Duración:00:00:05
7.1 Metrics for Evaluating LLMs 116
Duración:00:07:47
7.2 Common Evaluation Methods 121
Duración:00:09:13
7.3 Interpreting Evaluation Results 128
Duración:00:08:10
Chapter 8: Ethical Considerations and Bias Mitigation 134
Duración:00:00:06
8.1 Understanding Ethical Issues in LLMs 134
Duración:00:06:25
8.2 Identifying and Mitigating Bias 139
Duración:00:06:27
8.3 Ensuring Responsible AI Development 143
Duración:00:07:21
Chapter 9: Deploying Large Language Models 149
Duración:00:00:04
9.1 Deployment Strategies and Best Practices 149
Duración:00:06:26
9.2 Scaling LLMs for Production 154
Duración:00:08:11
9.3 Monitoring and Maintenance 159
Duración:00:07:41
Chapter 10: Advanced Topics in LLMs 165
Duración:00:00:04
10.1 Multi-Modal Models 165
Duración:00:05:23
10.2 Few-Shot and Zero-Shot Learning 169
Duración:00:06:06
10.3 Research Frontiers in LLMs 173
Duración:00:07:23
Chapter 11: Case Studies and Real-World Applications 179
Duración:00:00:05
11.1 Industry Use Cases 179
Duración:00:12:54
11.2 Success Stories and Lessons Learned 187
Duración:00:07:27
11.3 Future Trends and Predictions 193
Duración:00:08:39
Chapter 12: Tools and Frameworks for LLM Development 199
Duración:00:00:05
12.1 Popular Libraries and Frameworks 199
Duración:00:08:44
12.2 Development Tools and Platforms 205
Duración:00:07:58
12.3 Integrating LLMs with Existing Systems 210
Duración:00:08:44
Chapter 13: Security and Privacy in LLMs 217
Duración:00:00:05
13.1 Security Challenges in LLM Development 217
Duración:00:07:26
13.2 Privacy Concerns and Mitigation Strategies 222
Duración:00:06:59
13.3 Regulatory Compliance 227
Duración:00:07:11
Chapter 14: Community and Ecosystem 232
Duración:00:00:05
14.1 Open Source Contributions 232
Duración:00:06:16
14.2 Collaborative Projects and Research 236
Duración:00:07:59
14.3 Building a Career in LLM Engineering 242
Duración:00:06:12
Chapter 15: Future Directions and Innovations 247
Duración:00:00:05
15.1 Emerging Trends in LLM Research 247
Duración:00:10:36
15.2 Potential Breakthroughs and Innovations 254
Duración:00:08:58
15.3 The Road Ahead for LLMs 260
Duración:00:06:37