
Combinatorial Problems in Graph Theory
N.B. Singh
This audiobook is narrated by a digital voice.
"Combinatorial Problems in Graph Theory" offers a comprehensive introduction to the fundamentals of graph theory for beginners. Exploring the fascinating world of graphs, this book covers essential concepts, from basic definitions to advanced applications across diverse fields such as computer science, optimization, and social networks. With clear explanations, practical examples, and engaging problems, it equips readers with the foundational knowledge needed to understand and solve combinatorial problems using graph theory. Ideal for students and enthusiasts alike, this book serves as an accessible entry point into this essential branch of mathematics.
Duration - 5h 17m.
Author - N.B. Singh.
Narrator - Digital Voice Mary G.
Published Date - Monday, 20 January 2025.
Copyright - © 2024 N.B. Singh ©.
Location:
United States
Description:
This audiobook is narrated by a digital voice. "Combinatorial Problems in Graph Theory" offers a comprehensive introduction to the fundamentals of graph theory for beginners. Exploring the fascinating world of graphs, this book covers essential concepts, from basic definitions to advanced applications across diverse fields such as computer science, optimization, and social networks. With clear explanations, practical examples, and engaging problems, it equips readers with the foundational knowledge needed to understand and solve combinatorial problems using graph theory. Ideal for students and enthusiasts alike, this book serves as an accessible entry point into this essential branch of mathematics. Duration - 5h 17m. Author - N.B. Singh. Narrator - Digital Voice Mary G. Published Date - Monday, 20 January 2025. Copyright - © 2024 N.B. Singh ©.
Language:
English
Preface
Duración:00:00:31
Introduction to Graph Theory
Duración:00:00:54
Basic Definitions and Concepts
Duración:00:03:13
Types of Graphs
Duración:00:03:54
Graph Representations
Duración:00:04:11
Graph Traversal Techniques
Duración:00:04:08
Fundamental Theorems in Graph Theory
Duración:00:03:46
Graph Coloring Problems
Duración:00:00:56
Vertex Coloring
Duración:00:02:00
Edge Coloring
Duración:00:03:45
Chromatic Number
Duración:00:03:57
Applications of Graph Coloring
Duración:00:04:40
Advanced Coloring Techniques
Duración:00:05:15
Graph Connectivity
Duración:00:00:54
Connected and Disconnected Graphs
Duración:00:04:36
Connectivity in Directed Graphs
Duración:00:04:31
Graph Cuts and Cutsets
Duración:00:04:08
Menger’s Theorem
Duración:00:04:38
Network Reliability
Duración:00:04:51
Graph Matching and Covering
Duración:00:01:00
Maximum Matching
Duración:00:04:53
Perfect Matching
Duración:00:04:49
Hall’s Marriage Theorem
Duración:00:04:31
Vertex Cover
Duración:00:05:07
Applications of Matching Theory
Duración:00:05:08
Hamiltonian and Eulerian Graphs
Duración:00:01:04
Eulerian Circuits and Paths
Duración:00:05:04
Hamiltonian Cycles and Paths
Duración:00:04:58
Dirac’s and Ore’s Theorems
Duración:00:05:00
Travelling Salesman Problem
Duración:00:04:49
Applications of Hamiltonian and Eulerian Graphs
Duración:00:04:13
Graph Algorithms and Complexity
Duración:00:01:06
Algorithmic Graph Theory
Duración:00:04:01
Shortest Path Algorithms
Duración:00:03:41
Minimum Spanning Tree
Duración:00:03:09
Graph Search Algorithms
Duración:00:03:21
Computational Complexity of Graph Problems
Duración:00:03:19
Extremal Graph Theory
Duración:00:01:06
Turán’s Theorem
Duración:00:03:07
Erdős-Stone Theorem
Duración:00:03:11
Ramsey Theory
Duración:00:02:58
Extremal Functions
Duración:00:03:00
Applications of Extremal Graph Theory
Duración:00:03:47
Random Graphs
Duración:00:01:01
Introduction to Random Graphs
Duración:00:03:31
Erdős–Rényi Model
Duración:00:04:03
Properties of Random Graphs
Duración:00:03:55
Phase Transitions in Random Graphs
Duración:00:03:56
Applications of Random Graphs
Duración:00:05:13
Planar Graphs and Graph Drawing
Duración:00:01:02
Planarity and Non-Planarity
Duración:00:04:51
Graph Drawing Algorithms
Duración:00:05:24
Applications of Planar Graphs
Duración:00:05:20
Graph Embedding
Duración:00:04:04
Spectral Graph Theory
Duración:00:01:00
Graph Spectra
Duración:00:02:59
Adjacency Matrix and Laplacian Matrix
Duración:00:04:58
Eigenvalues and Eigenvectors
Duración:00:04:30
Applications of Spectral Graph Theory
Duración:00:03:28
Cheeger’s Inequality
Duración:00:04:38
Graph Minors and Tree Decompositions
Duración:00:01:00
Graph Minors
Duración:00:04:33
Robertson-Seymour Theorem
Duración:00:03:14
Treewidth and Pathwidth
Duración:00:03:12
Tree Decomposition Algorithms
Duración:00:03:22
Applications of Graph Decompositions
Duración:00:03:38
Graph Isomorphism and Automorphisms
Duración:00:01:07
Graph Isomorphism Problem
Duración:00:03:25
Automorphism Groups
Duración:00:02:52
Isomorphism Testing Algorithms
Duración:00:03:07
Applications of Graph Isomorphism
Duración:00:03:26
Graph Symmetry
Duración:00:03:39
Network Flows
Duración:00:01:03
Max-Flow Min-Cut Theorem
Duración:00:02:55
Ford-Fulkerson Algorithm
Duración:00:03:29
Maximum Flow Problem
Duración:00:03:26
Applications of Network Flows
Duración:00:04:09
Flow Networks
Duración:00:03:16
Combinatorial Optimization in Graphs
Duración:00:01:15
Optimization Problems on Graphs
Duración:00:03:48
Traveling Salesman Problem
Duración:00:03:43
Knapsack Problem
Duración:00:03:34
Approximation Algorithms
Duración:00:04:03
Applications of Combinatorial Optimization
Duración:00:04:26
Applications of Graph Theory
Duración:00:01:17
Social Network Analysis
Duración:00:04:56
Biological Networks
Duración:00:05:16
Computer Networks
Duración:00:03:50
Operations Research
Duración:00:03:27
Graph Theory in Other Fields
Duración:00:03:49