Papers Read on AI-logo

Papers Read on AI

Education Podcasts

Keeping you up to date with the latest trends and best performing architectures in this fast evolving field in computer science. Selecting papers by comparative results, citations and influence we educate you on the latest research. Consider supporting us on for feedback and ideas.




Keeping you up to date with the latest trends and best performing architectures in this fast evolving field in computer science. Selecting papers by comparative results, citations and influence we educate you on the latest research. Consider supporting us on for feedback and ideas.






BitDelta: Your Fine-Tune May Only Be Worth One Bit

Large Language Models (LLMs) are typically trained in two phases: pre-training on large internet-scale datasets, and fine-tuning for downstream tasks. Given the higher computational demand of pre-training, it's intuitive to assume that fine-tuning adds less new information to the model, and is thus more compressible. We explore this assumption by decomposing the weights of fine-tuned models into their pre-trained components and an additional delta. We introduce a simple method, BitDelta, which successfully quantizes this delta down to 1 bit without compromising performance. This interesting finding not only highlights the potential redundancy of information added during fine-tuning, but also has significant implications for the multi-tenant serving and multi-tenant storage of fine-tuned models. By enabling the use of a single high-precision base model accompanied by multiple 1-bit deltas, BitDelta dramatically reduces GPU memory requirements by more than 10x, which can also be translated to enhanced generation latency in multi-tenant settings. We validate BitDelta through experiments across Llama-2 and Mistral model families, and on models up to 70B parameters, showcasing minimal performance degradation over all tested settings. 2024: James Liu, Guangxuan Xiao, Kai Li, Jason D. Lee, Song Han, Tri Dao, Tianle Cai


Ring Attention with Blockwise Transformers for Near-Infinite Context

Transformers have emerged as the architecture of choice for many state-of-the-art AI models, showcasing exceptional performance across a wide range of AI applications. However, the memory demands imposed by Transformers limit their ability to handle long sequences, thereby posing challenges in utilizing videos, actions, and other long-form sequences and modalities in complex environments. We present a novel approach, Ring Attention with Blockwise Transformers (Ring Attention), which leverages blockwise computation of self-attention and feedforward to distribute long sequences across multiple devices while fully overlapping the communication of key-value blocks with the computation of blockwise attention. Our approach enables training and inference of sequences that are up to device count times longer than those achievable by prior memory-efficient Transformers, without resorting to approximations or incurring additional communication and computation overheads. Extensive experiments on language modeling and reinforcement learning tasks demonstrate the effectiveness of our approach in allowing millions of tokens context size and improving performance. 2023: Hao Liu, Matei Zaharia, Pieter Abbeel


Premise Order Matters in Reasoning with Large Language Models

Large language models (LLMs) have accomplished remarkable reasoning performance in various domains. However, in the domain of reasoning tasks, we discover a frailty: LLMs are surprisingly brittle to the ordering of the premises, despite the fact that such ordering does not alter the underlying task. In particular, we observe that LLMs achieve the best performance when the premise order aligns with the context required in intermediate reasoning steps. For example, in deductive reasoning tasks, presenting the premises in the same order as the ground truth proof in the prompt (as opposed to random ordering) drastically increases the model's accuracy. We first examine the effect of premise ordering on deductive reasoning on a variety of LLMs, and our evaluation shows that permuting the premise order can cause a performance drop of over 30%. In addition, we release the benchmark R-GSM, based on GSM8K, to examine the ordering effect for mathematical problem-solving, and we again observe a significant drop in accuracy, relative to the original GSM8K benchmark. 2024: Xinyun Chen, Ryan A. Chi, Xuezhi Wang, Denny Zhou


Generative Representational Instruction Tuning

All text-based language problems can be reduced to either generation or embedding. Current models only perform well at one or the other. We introduce generative representational instruction tuning (GRIT) whereby a large language model is trained to handle both generative and embedding tasks by distinguishing between them through instructions. Compared to other open models, our resulting GritLM 7B sets a new state of the art on the Massive Text Embedding Benchmark (MTEB) and outperforms all models up to its size on a range of generative tasks. By scaling up further, GritLM 8x7B outperforms all open generative language models that we tried while still being among the best embedding models. Notably, we find that GRIT matches training on only generative or embedding data, thus we can unify both at no performance loss. Among other benefits, the unification via GRIT speeds up Retrieval-Augmented Generation (RAG) by>60% for long documents, by no longer requiring separate retrieval and generation models. Models, code, etc. are freely available at 2024: Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, Douwe Kiela


DoRA: Weight-Decomposed Low-Rank Adaptation

Among the widely used parameter-efficient finetuning (PEFT) methods, LoRA and its variants have gained considerable popularity because of avoiding additional inference costs. However, there still often exists an accuracy gap between these methods and full fine-tuning (FT). In this work, we first introduce a novel weight decomposition analysis to investigate the inherent differences between FT and LoRA. Aiming to resemble the learning capacity of FT from the findings, we propose Weight-Decomposed LowRank Adaptation (DoRA). DoRA decomposes the pre-trained weight into two components, magnitude and direction, for fine-tuning, specifically employing LoRA for directional updates to efficiently minimize the number of trainable parameters. By employing DoRA, we enhance both the learning capacity and training stability of LoRA while avoiding any additional inference overhead. DoRA consistently outperforms LoRA on fine-tuning LLaMA, LLaVA, and VL-BART on various downstream tasks, such as commonsense reasoning, visual instruction tuning, and image/video-text understanding. 2024: Shih-yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng, Min-Hung Chen


Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time

The conventional recipe for maximizing model accuracy is to (1) train multiple models with various hyperparameters and (2) pick the individual model which performs best on a held-out validation set, discarding the remainder. In this paper, we revisit the second step of this procedure in the context of fine-tuning large pre-trained models, where fine-tuned models often appear to lie in a single low error basin. We show that averaging the weights of multiple models fine-tuned with different hyperparameter configurations often improves accuracy and robustness. Unlike a conventional ensemble, we may average many models without incurring any additional inference or memory costs -- we call the results"model soups."When fine-tuning large pre-trained models such as CLIP, ALIGN, and a ViT-G pre-trained on JFT, our soup recipe provides significant improvements over the best model in a hyperparameter sweep on ImageNet. The resulting ViT-G model, which attains 90.94% top-1 accuracy on ImageNet, achieved a new state of the art. Furthermore, we show that the model soup approach extends to multiple image classification and natural language processing tasks, improves out-of-distribution performance, and improves zero-shot performance on new downstream tasks. Finally, we analytically relate the performance similarity of weight-averaging and logit-ensembling to flatness of the loss and confidence of the predictions, and validate this relation empirically. Code is available at 2022: Mitchell Wortsman, Gabriel Ilharco, S. Gadre, R. Roelofs, Raphael Gontijo-Lopes, Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Y. Carmon, Simon Kornblith, Ludwig Schmidt


Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models

Harnessing the power of human-annotated data through Supervised Fine-Tuning (SFT) is pivotal for advancing Large Language Models (LLMs). In this paper, we delve into the prospect of growing a strong LLM out of a weak one without the need for acquiring additional human-annotated data. We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN), which starts from a supervised fine-tuned model. At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself. More specifically, the LLM generates its own training data from its previous iterations, refining its policy by discerning these self-generated responses from those obtained from human-annotated data. Our method progressively elevates the LLM from a nascent model to a formidable one, unlocking the full potential of human-annotated demonstration data for SFT. Theoretically, we prove that the global optimum to the training objective function of our method is achieved only when the LLM policy aligns with the target data distribution. Empirically, we evaluate our method on several benchmark datasets including the HuggingFace Open LLM Leaderboard, MT-Bench, and datasets from Big-Bench. Our results show that SPIN can significantly improve the LLM's performance across a variety of benchmarks and even outperform models trained through direct preference optimization (DPO) supplemented with extra GPT-4 preference data. This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents. Codes are available at 2024: Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, Quanquan Gu


World Model on Million-Length Video And Language With RingAttention

Current language models fall short in understanding aspects of the world not easily described in words, and struggle with complex, long-form tasks. Video sequences offer valuable temporal information absent in language and static images, making them attractive for joint modeling with language. Such models could develop a understanding of both human textual knowledge and the physical world, enabling broader AI capabilities for assisting humans. However, learning from millions of tokens of video and language sequences poses challenges due to memory constraints, computational complexity, and limited datasets. To address these challenges, we curate a large dataset of diverse videos and books, utilize the RingAttention technique to scalably train on long sequences, and gradually increase context size from 4K to 1M tokens. This paper makes the following contributions: (a) Largest context size neural network: We train one of the largest context size transformers on long video and language sequences, setting new benchmarks in difficult retrieval tasks and long video understanding. (b) Solutions for overcoming vision-language training challenges, including using masked sequence packing for mixing different sequence lengths, loss weighting to balance language and vision, and model-generated QA dataset for long sequence chat. (c) A highly-optimized implementation with RingAttention, masked sequence packing, and other key features for training on millions-length multimodal sequences. (d) Fully open-sourced a family of 7B parameter models capable of processing long text documents (LWM-Text, LWM-Text-Chat) and videos (LWM, LWM-Chat) of over 1M tokens. This work paves the way for training on massive datasets of long video and language to develop understanding of both human knowledge and the multimodal world, and broader capabilities. 2024: Hao Liu, Wilson Yan, Matei Zaharia, Pieter Abbeel


Fractal Patterns May Unravel the Intelligence in Next-Token Prediction

We study the fractal structure of language, aiming to provide a precise formalism for quantifying properties that may have been previously suspected but not formally shown. We establish that language is: (1) self-similar, exhibiting complexities at all levels of granularity, with no particular characteristic context length, and (2) long-range dependent (LRD), with a Hurst parameter of approximately H=0.70. Based on these findings, we argue that short-term patterns/dependencies in language, such as in paragraphs, mirror the patterns/dependencies over larger scopes, like entire documents. This may shed some light on how next-token prediction can lead to a comprehension of the structure of text at multiple levels of granularity, from words and clauses to broader contexts and intents. We also demonstrate that fractal parameters improve upon perplexity-based bits-per-byte (BPB) in predicting downstream performance. We hope these findings offer a fresh perspective on language and the mechanisms underlying the success of LLMs. 2024: Ibrahim M. Alabdulmohsin, Vinh Q. Tran, Mostafa Dehghani


Precise Zero-Shot Dense Retrieval without Relevance Labels

While dense retrieval has been shown to be effective and efficient across tasks and languages, it remains difficult to create effective fully zero-shot dense retrieval systems when no relevance labels are available. In this paper, we recognize the difficulty of zero-shot learning and encoding relevance. Instead, we propose to pivot through Hypothetical Document Embeddings (HyDE). Given a query, HyDE first zero-shot prompts an instruction-following language model (e.g., InstructGPT) to generate a hypothetical document. The document captures relevance patterns but is “fake” and may contain hallucinations. Then, an unsupervised contrastively learned encoder (e.g., Contriever) encodes the document into an embedding vector. This vector identifies a neighborhood in the corpus embedding space, from which similar real documents are retrieved based on vector similarity. This second step grounds the generated document to the actual corpus, with the encoder’s dense bottleneck filtering out the hallucinations. Our experiments show that HyDE significantly outperforms the state-of-the-art unsupervised dense retriever Contriever and shows strong performance comparable to fine-tuned retrievers across various tasks (e.g. web search, QA, fact verification) and in non-English languages (e.g., sw, ko, ja, bn). 2022: Luyu Gao, Xueguang Ma, Jimmy J. Lin, Jamie Callan


Relevance-guided Supervision for OpenQA with ColBERT

Abstract Systems for Open-Domain Question Answering (OpenQA) generally depend on a retriever for finding candidate passages in a large corpus and a reader for extracting answers from those passages. In much recent work, the retriever is a learned component that uses coarse-grained vector representations of questions and passages. We argue that this modeling choice is insufficiently expressive for dealing with the complexity of natural language questions. To address this, we define ColBERT-QA, which adapts the scalable neural retrieval model ColBERT to OpenQA. ColBERT creates fine-grained interactions between questions and passages. We propose an efficient weak supervision strategy that iteratively uses ColBERT to create its own training data. This greatly improves OpenQA retrieval on Natural Questions, SQuAD, and TriviaQA, and the resulting system attains state-of-the-art extractive OpenQA performance on all three datasets. 2020: O. Khattab, Christopher Potts, M. Zaharia


ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction

Neural information retrieval (IR) has greatly advanced search and other knowledge-intensive language tasks. While many neural IR methods encode queries and documents into single-vector representations, late interaction models produce multi-vector representations at the granularity of each token and decompose relevance modeling into scalable token-level computations. This decomposition has been shown to make late interaction more effective, but it inflates the space footprint of these models by an order of magnitude. In this work, we introduce Maize, a retriever that couples an aggressive residual compression mechanism with a denoised supervision strategy to simultaneously improve the quality and space footprint of late interaction. We evaluate Maize across a wide range of benchmarks, establishing state-of-the-art quality within and outside the training domain while reducing the space footprint of late interaction models by 6–10x. 2021: Keshav Santhanam, O. Khattab, Jon Saad-Falcon, Christopher Potts, M. Zaharia


PLAID: An Efficient Engine for Late Interaction Retrieval

Pre-trained language models are increasingly important components across multiple information retrieval (IR) paradigms. Late interaction, introduced with the ColBERT model and recently refined in ColBERTv2, is a popular paradigm that holds state-of-the-art status across many benchmarks. To dramatically speed up the search latency of late interaction, we introduce the Performance-optimized Late Interaction Driver (PLAID) engine. Without impacting quality, PLAID swiftly eliminates low-scoring passages using a novel centroid interaction mechanism that treats every passage as a lightweight bag of centroids. PLAID uses centroid interaction as well as centroid pruning, a mechanism for sparsifying the bag of centroids, within a highly-optimized engine to reduce late interaction search latency by up to 7x on a GPU and 45x on a CPU against vanilla ColBERTv2, while continuing to deliver state-of-the-art retrieval quality. This allows the PLAID engine with ColBERTv2 to achieve latency of tens of milliseconds on a GPU and tens or just few hundreds of milliseconds on a CPU at large scale, even at the largest scales we evaluate with 140M passages. 2022: Keshav Santhanam, O. Khattab, Christopher Potts, M. Zaharia


RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval

Retrieval-augmented language models can better adapt to changes in world state and incorporate long-tail knowledge. However, most existing methods retrieve only short contiguous chunks from a retrieval corpus, limiting holistic understanding of the overall document context. We introduce the novel approach of recursively embedding, clustering, and summarizing chunks of text, constructing a tree with differing levels of summarization from the bottom up. At inference time, our RAPTOR model retrieves from this tree, integrating information across lengthy documents at different levels of abstraction. Controlled experiments show that retrieval with recursive summaries offers significant improvements over traditional retrieval-augmented LMs on several tasks. On question-answering tasks that involve complex, multi-step reasoning, we show state-of-the-art results; for example, by coupling RAPTOR retrieval with the use of GPT-4, we can improve the best performance on the QuALITY benchmark by 20% in absolute accuracy. 2024: Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, Christopher D. Manning


Corrective Retrieval Augmented Generation

Large language models (LLMs) inevitably exhibit hallucinations since the accuracy of generated texts cannot be secured solely by the parametric knowledge they encapsulate. Although retrieval-augmented generation (RAG) is a practicable complement to LLMs, it relies heavily on the relevance of retrieved documents, raising concerns about how the model behaves if retrieval goes wrong. To this end, we propose the Corrective Retrieval Augmented Generation (CRAG) to improve the robustness of generation. Specifically, a lightweight retrieval evaluator is designed to assess the overall quality of retrieved documents for a query, returning a confidence degree based on which different knowledge retrieval actions can be triggered. Since retrieval from static and limited corpora can only return sub-optimal documents, large-scale web searches are utilized as an extension for augmenting the retrieval results. Besides, a decompose-then-recompose algorithm is designed for retrieved documents to selectively focus on key information and filter out irrelevant information in them. CRAG is plug-and-play and can be seamlessly coupled with various RAG-based approaches. Experiments on four datasets covering short- and long-form generation tasks show that CRAG can significantly improve the performance of RAG-based approaches. 2024: Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, Zhen-Hua Ling


DeepSeek-Coder: When the Large Language Model Meets Programming -- The Rise of Code Intelligence

The rapid development of large language models has revolutionized code intelligence in software development. However, the predominance of closed-source models has restricted extensive research and development. To address this, we introduce the DeepSeek-Coder series, a range of open-source code models with sizes from 1.3B to 33B, trained from scratch on 2 trillion tokens. These models are pre-trained on a high-quality project-level code corpus and employ a fill-in-the-blank task with a 16K window to enhance code generation and infilling. Our extensive evaluations demonstrate that DeepSeek-Coder not only achieves state-of-the-art performance among open-source code models across multiple benchmarks but also surpasses existing closed-source models like Codex and GPT-3.5. Furthermore, DeepSeek-Coder models are under a permissive license that allows for both research and unrestricted commercial use. 2024: Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, Wenfeng Liang


A Comprehensive Survey on 3D Content Generation

Recent years have witnessed remarkable advances in artificial intelligence generated content(AIGC), with diverse input modalities, e.g., text, image, video, audio and 3D. The 3D is the most close visual modality to real-world 3D environment and carries enormous knowledge. The 3D content generation shows both academic and practical values while also presenting formidable technical challenges. This review aims to consolidate developments within the burgeoning domain of 3D content generation. Specifically, a new taxonomy is proposed that categorizes existing approaches into three types: 3D native generative methods, 2D prior-based 3D generative methods, and hybrid 3D generative methods. The survey covers approximately 60 papers spanning the major techniques. Besides, we discuss limitations of current 3D content generation techniques, and point out open challenges as well as promising directions for future work. Accompanied with this survey, we have established a project website where the resources on 3D content generation research are provided. The project page is available at 2024: Jian Liu, Xiaoshui Huang, Tianyu Huang, Lu Chen, Yuenan Hou, Shixiang Tang, Ziwei Liu, Wanli Ouyang, Wangmeng Zuo, Junjun Jiang, Xianming Liu


OLMo: Accelerating the Science of Language Models

Language models (LMs) have become ubiquitous in both NLP research and in commercial product offerings. As their commercial importance has surged, the most powerful models have become closed off, gated behind proprietary interfaces, with important details of their training data, architectures, and development undisclosed. Given the importance of these details in scientifically studying these models, including their biases and potential risks, we believe it is essential for the research community to have access to powerful, truly open LMs. To this end, this technical report details the first release of OLMo, a state-of-the-art, truly Open Language Model and its framework to build and study the science of language modeling. Unlike most prior efforts that have only released model weights and inference code, we release OLMo and the whole framework, including training data and training and evaluation code. We hope this release will empower and strengthen the open research community and inspire a new wave of innovation. 2024: Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, A. Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot, William Merrill, Jacob Daniel Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini, Noah A. Smith, Hanna Hajishirzi


Who’s Harry Potter? Approximate Unlearning in LLMs

Large language models (LLMs) are trained on massive internet corpora that often contain copyrighted content. This poses legal and ethical challenges for the developers and users of these models, as well as the original authors and publishers. In this paper, we propose a novel technique for unlearning a subset of the training data from a LLM, without having to retrain it from scratch. We evaluate our technique on the task of unlearning the Harry Potter books from the Llama2-7b model (a generative language model recently open-sourced by Meta). While the model took over 184K GPU-hours to pretrain, we show that in about 1 GPU hour of finetuning, we effectively erase the model's ability to generate or recall Harry Potter-related content, while its performance on common benchmarks (such as Winogrande, Hellaswag, arc, boolq and piqa) remains almost unaffected. We make our fine-tuned model publicly available on HuggingFace for community evaluation. To the best of our knowledge, this is the first paper to present an effective technique for unlearning in generative language models. Our technique consists of three main components: First, we use a reinforced model that is further trained on the target data to identify the tokens that are most related to the unlearning target, by comparing its logits with those of a baseline model. Second, we replace idiosyncratic expressions in the target data with generic counterparts, and leverage the model's own predictions to generate alternative labels for every token. These labels aim to approximate the next-token predictions of a model that has not been trained on the target data. Third, we finetune the model on these alternative labels, which effectively erases the original text from the model's memory whenever it is prompted with its context. 2023: Ronen Eldan, M. Russinovich


Parameter-Efficient Transfer Learning for NLP

Fine-tuning large pre-trained models is an effective transfer mechanism in NLP. However, in the presence of many downstream tasks, fine-tuning is parameter inefficient: an entire new model is required for every task. As an alternative, we propose transfer with adapter modules. Adapter modules yield a compact and extensible model; they add only a few trainable parameters per task, and new tasks can be added without revisiting previous ones. The parameters of the original network remain fixed, yielding a high degree of parameter sharing. To demonstrate adapter's effectiveness, we transfer the recently proposed BERT Transformer model to 26 diverse text classification tasks, including the GLUE benchmark. Adapters attain near state-of-the-art performance, whilst adding only a few parameters per task. On GLUE, we attain within 0.4% of the performance of full fine-tuning, adding only 3.6% parameters per task. By contrast, fine-tuning trains 100% of the parameters per task. 2019: N. Houlsby, A. Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, S. Gelly Natural language processing, Benchmark (computing), Transformer, Document classification, Downstream (software development), While