
Location:
Germany
Genres:
Science Podcasts
Description:
Discover the stories behind the science!
Twitter:
@epigenetics_pod
Language:
English
Episodes
DNA Methylation Alterations in Neurodegenerative Diseases (Paula Desplats)
6/1/2023
In this episode of the Epigenetics Podcast, we caught up with Paula Desplats from the University of California San Diego to talk about her work on DNA Methylation Alterations in Neurodegenerative Diseases.
The laboratory of Paula desalts focuses on decoding the role of epigenetic mechanisms, like DNA methylation, on the onset and progression of neurodegenerative diseases like Parkinson’s and Alzheimer’s. In doing so, on of the goals of the Desplats team is to develop a biomarker panel based on quantification of DNA methylation of selected genes that can discriminate Parkison's Disease patients from healthy subjects in a simple blood test. More recently, the team also focused on the role of the circadian rhythm on neurodegenerative diseases and finding a way how interventions can help in managing the disease.
References
Masliah, E., Dumaop, W., Galasko, D., & Desplats, P. (2013). Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics, 8(10), 1030–1038. https://doi.org/10.4161/epi.25865
Cronin, P., McCarthy, M. J., Lim, A., Salmon, D. P., Galasko, D., Masliah, E., De Jager, P. L., Bennett, D. A., & Desplats, P. (2017). Circadian alterations during early stages of Alzheimer's disease are associated with aberrant cycles of DNA methylation in BMAL1. Alzheimer's & dementia : the journal of the Alzheimer's Association, 13(6), 689–700. https://doi.org/10.1016/j.jalz.2016.10.003
Henderson-Smith, A., Fisch, K. M., Hua, J., Liu, G., Ricciardelli, E., Jepsen, K., Huentelman, M., Stalberg, G., Edland, S. D., Scherzer, C. R., Dunckley, T., & Desplats, P. (2019). DNA methylation changes associated with Parkinson's disease progression: outcomes from the first longitudinal genome-wide methylation analysis in blood. Epigenetics, 14(4), 365–382. https://doi.org/10.1080/15592294.2019.1588682
Nasamran, C. A., Sachan, A., Mott, J., Kuras, Y. I., Scherzer, C. R., Study, H. B., Ricciardelli, E., Jepsen, K., Edland, S. D., Fisch, K. M., & Desplats, P. (2021). Differential blood DNA methylation across Lewy body dementias. Alzheimer's & dementia (Amsterdam, Netherlands), 13(1), e12156. https://doi.org/10.1002/dad2.12156
Related Episodes
Development of Integrative Machine Learning Tools for Neurodegenerative Diseases (Enrico Glaab)
The Role of DNA Methylation in Epilepsy (Katja Kobow)
CpG Islands, DNA Methylation, and Disease (Sir Adrian Bird)
Contact
Epigenetics Podcast on Twitter
Epigenetics Podcast on Instagram
Epigenetics Podcast on Mastodon
Active Motif on Twitter
Active Motif on LinkedIn
Email: podcast@activemotif.com
Duration:00:40:18
scDamID, EpiDamID and Lamina Associated Domains (Jop Kind)
5/17/2023
In this episode of the Epigenetics Podcast, we caught up with Jop Kind from Hubrecht Institute to talk about his work on single cell DamID, EpiDamID, and Lamina Associated Domains (LADs).
Jop Kind started out developing single cell DamID (scDamID), based on the DamID technique. First, this technique was adapted to a microscopic readout which enabled them to follow the localisation of chromatin domains after cell division. Next, the lab expanded this technique into the NGS space and created genome-wide maps of nuclear lamina Interactions in single human cells. Since LADs are in a heterochromatic chromatin context, the lab expanded scDamID into the epigenetic space. They first combined it with a transcriptional readout. Later-on they developed EpiDamID, a method to target a diverse set of chromatin types by taking advantage of the binding specificities of single-chain variable fragment antibodies, engineered chromatin reader domains, and endogenous chromatin-binding proteins.
References
Kind, J., Pagie, L., Ortabozkoyun, H., Boyle, S., de Vries, S. S., Janssen, H., Amendola, M., Nolen, L. D., Bickmore, W. A., & van Steensel, B. (2013). Single-Cell Dynamics of Genome-Nuclear Lamina Interactions. Cell, 153(1), 178–192. https://doi.org/10.1016/j.cell.2013.02.028
Kind, J., Pagie, L., de Vries, S. S., Nahidiazar, L., Dey, S. S., Bienko, M., Zhan, Y., Lajoie, B., de Graaf, C. A., Amendola, M., Fudenberg, G., Imakaev, M., Mirny, L. A., Jalink, K., Dekker, J., van Oudenaarden, A., & van Steensel, B. (2015). Genome-wide Maps of Nuclear Lamina Interactions in Single Human Cells. Cell, 163(1), 134–147. https://doi.org/10.1016/j.cell.2015.08.040
Borsos, M., Perricone, S.M., Schauer, T. et al. Genome–lamina interactions are established de novo in the early mouse embryo. Nature 569, 729–733 (2019). https://doi.org/10.1038/s41586-019-1233-0
Markodimitraki, C. M., Rang, F. J., Rooijers, K., de Vries, S. S., Chialastri, A., de Luca, K. L., Lochs, S. J. A., Mooijman, D., Dey, S. S., & Kind, J. (2020). Simultaneous quantification of protein–DNA interactions and transcriptomes in single cells with scDam&T-seq. Nature Protocols, 15(6), 1922–1953. https://doi.org/10.1038/s41596-020-0314-8
Rang, F. J., de Luca, K. L., de Vries, S. S., Valdes-Quezada, C., Boele, E., Nguyen, P. D., Guerreiro, I., Sato, Y., Kimura, H., Bakkers, J., & Kind, J. (2022). Single-cell profiling of transcriptome and histone modifications with EpiDamID. Molecular Cell, 82(10), 1956-1970.e14. https://doi.org/10.1016/j.molcel.2022.03.009
Related Episodes
Dosage Compensation in Drosophila (Asifa Akhtar)
Chromatin Profiling: From ChIP to CUT&RUN, CUT&Tag and CUTAC (Steven Henikoff)
Single Cell Epigenomics in Neuronal Development (Tim Petros)
Contact
Epigenetics Podcast on Twitter
Epigenetics Podcast on Instagram
Epigenetics Podcast on Mastodon
Active Motif on Twitter
Active Motif on LinkedIn
Email: podcast@activemotif.com
Duration:00:51:08
Circulating Epigenetic Biomarkers in Cancer (Charlotte Proudhon)
5/4/2023
In this episode of the Epigenetics Podcast, we caught up with Charlotte Proudhon from the Institut Curie to talk about her work on circulating tumor DNA and circulating Epi-mutations as biomarkers in cancer.
Charlotte Proudhon started out her research career by investigating circulating tumor DNA (ctDNA). This kind of DNA is shed into the bloodstream by apoptotic tumor cells and can be analyzed after collection by a simple blood draw, which makes it a very useful biomarker for cancer. Using this approach cancers can be identified by their unique mutational fingerprint. However, soon the limitations of this approach became apparent and the fact that this ctDNA is actually shed into the bloodstream as nucleosomal particles was utilized by the Proudhon team and now the methylation fingerprint of the LINE-1 repeats is used as a biomarker for cancer diagnosis and monitoring of the success of a cancer treatment.
References
Decraene, C., Silveira, A. B., Bidard, F. C., Vallée, A., Michel, M., Melaabi, S., Vincent-Salomon, A., Saliou, A., Houy, A., Milder, M., Lantz, O., Ychou, M., Denis, M. G., Pierga, J. Y., Stern, M. H., & Proudhon, C. (2018). Multiple Hotspot Mutations Scanning by Single Droplet Digital PCR. Clinical chemistry, 64(2), 317–328. https://doi.org/10.1373/clinchem.2017.272518
Bortolini Silveira, A., Bidard, F. C., Tanguy, M. L., Girard, E., Trédan, O., Dubot, C., Jacot, W., Goncalves, A., Debled, M., Levy, C., Ferrero, J. M., Jouannaud, C., Rios, M., Mouret-Reynier, M. A., Dalenc, F., Hego, C., Rampanou, A., Albaud, B., Baulande, S., Berger, F., … Pierga, J. Y. (2021). Multimodal liquid biopsy for early monitoring and outcome prediction of chemotherapy in metastatic breast cancer. NPJ breast cancer, 7(1), 115. https://doi.org/10.1038/s41523-021-00319-4
Related Episodes
Epigenome-based Precision Medicine (Eleni Tomazou)
Epigenetics and Epitranscriptomics in Cancer (Manel Esteller)
DNA Methylation and Mammalian Development (Déborah Bourc'his)
Contact
Epigenetics Podcast on Twitter
Epigenetics Podcast on Instagram
Epigenetics Podcast on Mastodon
Active Motif on Twitter
Active Motif on LinkedIn
Email: podcast@activemotif.com
Duration:00:38:02
Epigenetic Landscapes During Cancer (Luciano Di Croce)
4/20/2023
In this episode of the Epigenetics Podcast, we caught up with Luciano Di Croce from the Center of Genomic Regulation in Barcelona to talk about his work on epigenetic landscapes in cancer.
The Di Croce Lab focuses on the Polycomb Complex and its influence on diseases like cancer. Luciano Di Croce started out his research career investigating the oncogenic transcription factor PML-RAR. They could show that in leukemic cells knockdown of SUZ12, a key component of Polycomb repressive complex 2 (PRC2), reverts not only histone modification but also induces DNA de-methylation of PML-RAR target genes. More recently the team focused on two other Polycomb related proteins Zrf1 and PHF19 and were able to characterize some of their functions in gene targeting in different disease and developmental contexts.
References
Di Croce, L., Raker, V. A., Corsaro, M., Fazi, F., Fanelli, M., Faretta, M., Fuks, F., Lo Coco, F., Kouzarides, T., Nervi, C., Minucci, S., & Pelicci, P. G. (2002). Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science (New York, N.Y.), 295(5557), 1079–1082. https://doi.org/10.1126/science.1065173
Richly, H., Rocha-Viegas, L., Ribeiro, J. D., Demajo, S., Gundem, G., Lopez-Bigas, N., Nakagawa, T., Rospert, S., Ito, T., & Di Croce, L. (2010). Transcriptional activation of polycomb-repressed genes by ZRF1. Nature, 468(7327), 1124–1128. https://doi.org/10.1038/nature09574
Jain, P., Ballare, C., Blanco, E., Vizan, P., & Di Croce, L. (2020). PHF19 mediated regulation of proliferation and invasiveness in prostate cancer cells. eLife, 9, e51373. https://doi.org/10.7554/eLife.51373
Related Episodes
Oncohistones as Drivers of Pediatric Brain Tumors (Nada Jabado)
Transcription and Polycomb in Inheritance and Disease (Danny Reinberg)
Targeting COMPASS to Cure Childhood Leukemia (Ali Shilatifard)
Contact
Epigenetics Podcast on Twitter
Epigenetics Podcast on Instagram
Epigenetics Podcast on Mastodon
Active Motif on Twitter
Active Motif on LinkedIn
Email: podcast@activemotif.com
Duration:00:48:02
Formation of CenH3-deficient Kinetochores (Ines Drinnenberg)
4/6/2023
In this episode of the Epigenetics Podcast, we caught up with Ines Drinnenberg from Institute Curie to talk about her work on the formation of CenH3-deficient kinetochores.
The laboratory of Ines Drinneberg focuses on centromeres and how different strategies of centromere organization have evolved in different organisms. While most eukaryotes have monocentric chromosomes, where spindle attachment is restricted to a single chromosomal region resembling such classic X-shape like structures under the microscope, many lineages have evolved holocentric chromosomes where spindle microtubules attach along the entire length of the chromosome. The team was able to show the independent loss of CENH3/CENP-A in holocentric insects. Furthermore, the team focuses on how CenH3-deficient kinetochores form and were able to identify several conserved kinetochore components that emerged as a key component for CenH3-deficient kinetochore formation in Lepidoptera.
References
Drinnenberg, I. A., deYoung, D., Henikoff, S., & Malik, H. S. (2014). Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife, 3, e03676. https://doi.org/10.7554/eLife.03676
Molaro, A., & Drinnenberg, I. A. (2018). Studying the Evolution of Histone Variants Using Phylogeny. Methods in molecular biology (Clifton, N.J.), 1832, 273–291. https://doi.org/10.1007/978-1-4939-8663-7_15
Cortes-Silva, N., Ulmer, J., Kiuchi, T., Hsieh, E., Cornilleau, G., Ladid, I., Dingli, F., Loew, D., Katsuma, S., & Drinnenberg, I. A. (2020). CenH3-Independent Kinetochore Assembly in Lepidoptera Requires CCAN, Including CENP-T. Current biology : CB, 30(4), 561–572.e10. https://doi.org/10.1016/j.cub.2019.12.014
Senaratne, A. P., Muller, H., Fryer, K. A., Kawamoto, M., Katsuma, S., & Drinnenberg, I. A. (2021). Formation of the CenH3-Deficient Holocentromere in Lepidoptera Avoids Active Chromatin. Current biology : CB, 31(1), 173–181.e7. https://doi.org/10.1016/j.cub.2020.09.078
Vanpoperinghe, L., Carlier-Grynkorn, F., Cornilleau, G., Kusakabe, T., Drinnenberg, I. A., & Tran, P. T. (2021). Live-cell imaging reveals square shape spindles and long mitosis duration in the silkworm holocentric cells. microPublication biology, 2021, 10.17912/micropub.biology.000441. https://doi.org/10.17912/micropub.biology.000441
Related Episodes
The Role of Non-Histone Proteins in Chromosome Structure and Function During Mitosis (Bill Earnshaw)
Chromatin Profiling: From ChIP to CUT&RUN, CUT&Tag and CUTAC (Steven Henikoff)
In Vivo Nucleosome Structure and Dynamics (Srinivas Ramachandran)
Contact
Epigenetics Podcast on Twitter
Epigenetics Podcast on Instagram
Epigenetics Podcast on Mastodon
Active Motif on Twitter
Active Motif on LinkedIn
Email: podcast@activemotif.com
Duration:00:34:06
Effects of Environmental Cues on the Epigenome and Longevity (Paul Shiels)
3/23/2023
In this episode of the Epigenetics Podcast, we caught up with Paul Shiels from the University of Glasgow to talk about his work on the effects of environmental cues on the epigenome and longevity.
Paul Shiels and his team focus on the question on how age related health is influenced by the environment. Factors like the socio-economic position, nutrition, lifestyle and the environment can influence the microbiome and the inflammation burden on the body which in turn can alter individual trajectories of ageing and health. The lab also tries to understand the epigenetic, molecular and cellular mechanisms that link the exposome to chronic age related diseases of older people. They have shown that (1) imbalanced nutrition is associated with a microbiota-mediated accelerated ageing in the general population, (2) a significantly higher abundance of circulatory pathogenic bacteria is found in the most biologically aged, while those less biologically aged possess more circulatory salutogenic bacteria with a capacity to metabolise and produce cytoprotective Nrf2 agonists, (3) those at lower socioeconomic position possess significantly lower betaine levels indicative of a poorer diet and poorer health span and consistent with reduced global DNA methylation levels in this group.
References
Harris, S. E., Deary, I. J., MacIntyre, A., Lamb, K. J., Radhakrishnan, K., Starr, J. M., Whalley, L. J., & Shiels, P. G. (2006). The association between telomere length, physical health, cognitive ageing, and mortality in non-demented older people. Neuroscience Letters, 406(3), 260–264. https://doi.org/10.1016/j.neulet.2006.07.055
Paul G. Shiels, Improving Precision in Investigating Aging: Why Telomeres Can Cause Problems, The Journals of Gerontology: Series A, Volume 65A, Issue 8, August 2010, Pages 789–791, https://doi.org/10.1093/gerona/glq095
Mafra D, Ugochukwu SA, Borges NA, et al. Food for healthier aging: power on your plate. Critical Reviews in Food Science and Nutrition. 2022 Aug:1-14. DOI: 10.1080/10408398.2022.2107611. PMID: 35959705.
Shiels PG, Stenvinkel P, Kooman JP, McGuinness D. Circulating markers of ageing and allostatic load: A slow train coming. Practical Laboratory Medicine. 2017 Apr;7:49-54. DOI: 10.1016/j.plabm.2016.04.002. PMID: 28856219; PMCID: PMC5574864.
Related Episodes
Transposable Elements in Gene Regulation and Evolution (Marco Trizzino)
Epigenetic Clocks and Biomarkers of Ageing (Morgan Levine)
Aging and Epigenetics (Peter Tessarz)
Contact
Epigenetics Podcast on Twitter
Epigenetics Podcast on Instagram
Epigenetics Podcast on Mastodon
Active Motif on Twitter
Active Motif on LinkedIn
Email: podcast@activemotif.com
Duration:00:47:07
The Epigenetics of Human Sperm Cells (Sarah Kimmins)
3/9/2023
In this episode of the Epigenetics Podcast, we caught up with Sarah Kimmins from Université de Montreal to talk about her work on the epigenetics of human sperm cells.
The focus of Sarah Kimmins and her lab is how sperm and offspring health is impacted by the father's environment. The core of this is the sperm epigenome, which has been implicated in complex diseases such as infertility, cancer, diabetes, schizophrenia and autism. The Kimmins lab is interested which players play a role in this and came across the Histone post-translational modification H3K4me3. In this interview we talk about how the father's life choices can impact offspring health, which can also be inherited transgenerationally and how this can be used to develop intervention strategies to improve child and adult health.
References
Siklenka, K., Erkek, S., Godmann, M., Lambrot, R., McGraw, S., Lafleur, C., Cohen, T., Xia, J., Suderman, M., Hallett, M., Trasler, J., Peters, A. H., & Kimmins, S. (2015). Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science (New York, N.Y.), 350(6261), aab2006. https://doi.org/10.1126/science.aab2006
Lismer, A., Siklenka, K., Lafleur, C., Dumeaux, V., & Kimmins, S. (2020). Sperm histone H3 lysine 4 trimethylation is altered in a genetic mouse model of transgenerational epigenetic inheritance. Nucleic acids research, 48(20), 11380–11393. https://doi.org/10.1093/nar/gkaa712
Lismer, A., Dumeaux, V., Lafleur, C., Lambrot, R., Brind'Amour, J., Lorincz, M. C., & Kimmins, S. (2021). Histone H3 lysine 4 trimethylation in sperm is transmitted to the embryo and associated with diet-induced phenotypes in the offspring. Developmental cell, 56(5), 671–686.e6. https://doi.org/10.1016/j.devcel.2021.01.014
Related Episodes
H3K4me3, SET Proteins, Isw1, and their Role in Transcription (Jane Mellor)
The Effects of Early Life Stress on Mammalian Development (Catherine J. Peña)
DNA Methylation and Mammalian Development (Déborah Bourc'his)
Contact
Epigenetics Podcast on Twitter
Epigenetics Podcast on Instagram
Epigenetics Podcast on Mastodon
Active Motif on Twitter
Active Motif on LinkedIn
Email: podcast@activemotif.com
Duration:00:44:41
Transgenerational Inheritance and Evolution of Epimutations (Peter Sarkies)
2/23/2023
In this episode of the Epigenetics Podcast, we caught up with Peter Sarkies from University of Oxford Biochemistry to talk about his work on Transgenerational Inheritance of Epimutations.
The team in the Sarkies lab focuses on investigating the connections between epigenetic gene regulation and evolution. The lab performs evolution experiments in the nematode C. elegans to determine if evolution can be influenced by epigenetic differences between individuals in a given population when no changes in the underlying DNA sequence are observed. A second area of interest of the team is evolution of piRNAs, which are present in metazoans but have been lost in nematodes during evolution.
References
The Selfish Gene
Sarkies, P., & Miska, E. A. (2013). Is There Social RNA? Science, 341(6145), 467–468. https://doi.org/10.1126/science.1243175
Beltran, T., Shahrezaei, V., Katju, V., & Sarkies, P. (2020). Epimutations driven by small RNAs arise frequently but most have limited duration in Caenorhabditis elegans. Nature ecology & evolution, 4(11), 1539–1548. https://doi.org/10.1038/s41559-020-01293-z
Beltran, T., Pahita, E., Ghosh, S., Lenhard, B., & Sarkies, P. (2021). Integrator is recruited to promoter-proximally paused RNA Pol II to generate Caenorhabditis elegans piRNA precursors. The EMBO journal, 40(5), e105564. https://doi.org/10.15252/embj.2020105564
Related Episodes
The Role of Small RNAs in Transgenerational Inheritance in C. elegans (Oded Rechavi)
Epigenetic Influence on Memory Formation and Inheritance (Isabelle Mansuy)
Contact
Epigenetics Podcast on Twitter
Epigenetics Podcast on Instagram
Epigenetics Podcast on Mastodon
Active Motif on Twitter
Active Motif on LinkedIn
Email: podcast@activemotif.com
Duration:00:53:47
Transcription Elongation Control by the Paf1 Complex (Karen Arndt)
2/9/2023
In this episode of the Epigenetics Podcast, we caught up with Karen Arndt from the University of Pittsburgh to talk about her work on transcription elongation control by the Paf1 complex.
Karen Arndt and her lab investigate the process of transcriptional elongation and how RNA polymerase II overcomes obstacles like nucleosomes. One of the proteins that helps overcome those obstacles is the Paf1 complex. This complex associates with the transcribing polymerase and helps in modifying the chromatin template by ubiquitinating Histone H2B and methylating Histone H3.
References
Squazzo, S. L., Costa, P. J., Lindstrom, D. L., Kumer, K. E., Simic, R., Jennings, J. L., Link, A. J., Arndt, K. M., & Hartzog, G. A. (2002). The Paf1 complex physically and functionally associates with transcription elongation factors in vivo. The EMBO journal, 21(7), 1764–1774. https://doi.org/10.1093/emboj/21.7.1764
Van Oss, S. B., Shirra, M. K., Bataille, A. R., Wier, A. D., Yen, K., Vinayachandran, V., Byeon, I. L., Cucinotta, C. E., Héroux, A., Jeon, J., Kim, J., VanDemark, A. P., Pugh, B. F., & Arndt, K. M. (2016). The Histone Modification Domain of Paf1 Complex Subunit Rtf1 Directly Stimulates H2B Ubiquitylation through an Interaction with Rad6. Molecular cell, 64(4), 815–825. https://doi.org/10.1016/j.molcel.2016.10.008
Cucinotta, C. E., Hildreth, A. E., McShane, B. M., Shirra, M. K., & Arndt, K. M. (2019). The nucleosome acidic patch directly interacts with subunits of the Paf1 and FACT complexes and controls chromatin architecture in vivo. Nucleic acids research, 47(16), 8410–8423. https://doi.org/10.1093/nar/gkz549
Hildreth, A. E., Ellison, M. A., Francette, A. M., Seraly, J. M., Lotka, L. M., & Arndt, K. M. (2020). The nucleosome DNA entry-exit site is important for transcription termination and prevention of pervasive transcription. eLife, 9, e57757. https://doi.org/10.7554/eLife.57757
Related Episodes
Targeting COMPASS to Cure Childhood Leukemia (Ali Shilatifard)
H3K4me3, SET Proteins, Isw1, and their Role in Transcription (Jane Mellor)
Contact
Epigenetics Podcast on Twitter
Epigenetics Podcast on Instagram
Epigenetics Podcast on Mastodon
Active Motif on Twitter
Active Motif on LinkedIn
Email: podcast@activemotif.com
Duration:00:39:04
Molecular Mechanisms of Chromatin Modifying Enzymes (Karim-Jean Armache)
1/26/2023
In this episode of the Epigenetics Podcast, we caught up with Karim-Jean Armache from New York University - Grossman School of Medicine to talk about his work on the structural analysis of Polycomb Complex Proteins and molecular mechanisms of chromatin modifying enzymes.
Karim-Jean Armache started his research career with the structural characterization of the 12-subunit RNA Polymerase II. After starting his own lab he used this knowledge in x-ray crystallography and electron microscopy to study how gene silencing complexes like the PRC complex act on chromatin and influence transcription. Further work in the Armache Lab focused on Dot, a histone H3K79 methyltransferase, and how it acts on chromatin, as well as how it is regulated by Histone-Histone crosstalk.
References Armache, K. J., Garlick, J. D., Canzio, D., Narlikar, G. J., & Kingston, R. E. (2011). Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution. Science (New York, N.Y.), 334(6058), 977–982. https://doi.org/10.1126/science.1210915
Lee, C. H., Holder, M., Grau, D., Saldaña-Meyer, R., Yu, J. R., Ganai, R. A., Zhang, J., Wang, M., LeRoy, G., Dobenecker, M. W., Reinberg, D., & Armache, K. J. (2018). Distinct Stimulatory Mechanisms Regulate the Catalytic Activity of Polycomb Repressive Complex 2. Molecular cell, 70(3), 435–448.e5. https://doi.org/10.1016/j.molcel.2018.03.019
De Ioannes, P., Leon, V. A., Kuang, Z., Wang, M., Boeke, J. D., Hochwagen, A., & Armache, K. J. (2019). Structure and function of the Orc1 BAH-nucleosome complex. Nature communications, 10(1), 2894. https://doi.org/10.1038/s41467-019-10609-y
Valencia-Sánchez, M. I., De Ioannes, P., Wang, M., Truong, D. M., Lee, R., Armache, J. P., Boeke, J. D., & Armache, K. J. (2021). Regulation of the Dot1 histone H3K79 methyltransferase by histone H4K16 acetylation. Science (New York, N.Y.), 371(6527), eabc6663. https://doi.org/10.1126/science.abc6663
Related Episodes Transcription and Polycomb in Inheritance and Disease (Danny Reinberg)
From Nucleosome Structure to Function (Karolin Luger)
Oncohistones as Drivers of Pediatric Brain Tumors (Nada Jabado)
Contact Epigenetics Podcast on Twitter
Epigenetics Podcast on Instagram
Epigenetics Podcast on Mastodon
Active Motif on Twitter
Active Motif on LinkedIn
eMail: podcast@activemotif.com
Duration:00:34:12
The Role of PHF13 in Chromatin and Transcription (Sarah Kinkley)
1/12/2023
In this episode of the Epigenetics Podcast, we caught up with Sarah Kinkley from the Max Planck Institute of Molecular Genetics to talk about her work on PHF13 and its role in chromatin and transcription.
The Kinkley laboratory focuses mainly on unraveling the mechanism of action of the transcription factor PHF13 (PHC Finger Protein 13). PHF13 is a reader of the epigenetic mark H3K4 trimethylation which influences higher chromatin order, transcriptional regulation, and differentiation. The lab has shown that PHF13 plays a crucial role in phase separation and mitotic chromatin compaction.
References
Kinkley, S., Staege, H., Mohrmann, G., Rohaly, G., Schaub, T., Kremmer, E., Winterpacht, A., & Will, H. (2009). SPOC1: a novel PHD-containing protein modulating chromatin structure and mitotic chromosome condensation. Journal of cell science, 122(Pt 16), 2946–2956. https://doi.org/10.1242/jcs.047365
Chung, H. R., Xu, C., Fuchs, A., Mund, A., Lange, M., Staege, H., Schubert, T., Bian, C., Dunkel, I., Eberharter, A., Regnard, C., Klinker, H., Meierhofer, D., Cozzuto, L., Winterpacht, A., Di Croce, L., Min, J., Will, H., & Kinkley, S. (2016). PHF13 is a molecular reader and transcriptional co-regulator of H3K4me2/3. eLife, 5, e10607. https://doi.org/10.7554/eLife.10607
Connecting the Dots: PHF13 and cohesin promote polymer-polymer phase separation of chromatin into chromosomes. Francesca Rossi, Rene Buschow, Laura V. Glaser, Tobias Schubert, Hannah Staege, Astrid Grimme, Hans Will, Thorsten Milke, Martin Vingron, Andrea M. Chiariello, Sarah Kinkley. bioRxiv 2022.03.04.482956; doi: https://doi.org/10.1101/2022.03.04.482956
Related Episodes
The Role of Blimp-1 in Immune-Cell Differentiation (Erna Magnúsdóttir)
H3K4me3, SET Proteins, Isw1, and their Role in Transcription (Jane Mellor)
The Role of SMCHD1 in Development and Disease (Marnie Blewitt)
Contact
Epigenetics Podcast on Twitter
Epigenetics Podcast on Instagram
Epigenetics Podcast on Mastodon
Active Motif on Twitter
Active Motif on LinkedIn
Email: podcast@activemotif.com
Duration:00:34:33
Genome Organization Mediated by RNA Polymerase II (Argyrys Papantonis)
12/15/2022
In this episode of the Epigenetics Podcast, we caught up with Akis Papantonis from the University Medical Center Göttingen to talk about his work on genome organisation mediated by RNA Polymerase II.
The research of the Papantonis Laboratory focuses on investigating how environmental signalling stimuli are integrated by chromatin to control homeostatic to deregulated functional transitions. In more detail, the team is interested in how dynamic higher-order regulatory networks are influenced by the underlying linear DNA fiber. The ultimate goal of the laboratory is to understand general rules governing transcriptional and chromatin homeostasis and finally, how those rules might affect development, ageing or malignancies.
References
Larkin, J. D., Cook, P. R., & Papantonis, A. (2012). Dynamic reconfiguration of long human genes during one transcription cycle. Molecular and cellular biology, 32(14), 2738–2747. https://doi.org/10.1128/MCB.00179-12
Diermeier, S., Kolovos, P., Heizinger, L., Schwartz, U., Georgomanolis, T., Zirkel, A., Wedemann, G., Grosveld, F., Knoch, T. A., Merkl, R., Cook, P. R., Längst, G., & Papantonis, A. (2014). TNFα signalling primes chromatin for NF-κB binding and induces rapid and widespread nucleosome repositioning. Genome biology, 15(12), 536. https://doi.org/10.1186/s13059-014-0536-6
Sofiadis, K., Josipovic, N., Nikolic, M., Kargapolova, Y., Übelmesser, N., Varamogianni-Mamatsi, V., Zirkel, A., Papadionysiou, I., Loughran, G., Keane, J., Michel, A., Gusmao, E. G., Becker, C., Altmüller, J., Georgomanolis, T., Mizi, A., & Papantonis, A. (2021). HMGB1 coordinates SASP-related chromatin folding and RNA homeostasis on the path to senescence. Molecular systems biology, 17(6), e9760. https://doi.org/10.15252/msb.20209760
Enhancer-promoter contact formation requires RNAPII and antagonizes loop extrusion. Shu Zhang, Nadine Übelmesser, Mariano Barbieri, Argyris Papantonis. bioRxiv 2022.07.04.498738; doi: https://doi.org/10.1101/2022.07.04.498738
Related Episodes
Chromatin Organization During Development and Disease (Marieke Oudelaar)
Biophysical Modeling of 3-D Genome Organization (Leonid Mirny)
Hi-C and Three-Dimensional Genome Sequencing (Erez Lieberman Aiden)
Contact
Epigenetics Podcast on Twitter
Epigenetics Podcast on Instagram
Epigenetics Podcast on Mastodon
Active Motif on Twitter
Active Motif on LinkedIn
Email: podcast@activemotif.com
Duration:00:43:33
The Role of Pioneer Factors Zelda and Grainyhead at the Maternal-to-Zygotic Transition (Melissa Harrison)
12/1/2022
In this episode of the Epigenetics Podcast, we caught up with Melissa Harrison from the University of Wisconsin-Madison to talk about her work on the “Pioneer” Transcription Factors - Zelda and Grainyhead - and their role at the maternal-to-zygotic transition.
The Harrison lab studies how differentiation and development are driven by coordinated changes in gene expression. To do this, the targets of choice are the transcription factors Zelda and Grainyhead that bind to the genome at specific and crucial points in development and differentiation. These specialised transcription factors have the ability to bind to DNA in the context of nucleosomes which defines regulatory elements and leads to subsequent binding of additional classical transcription factors. These properties allow pioneer factors to act at the top of gene regulatory networks and control developmental transitions.
References
Harrison, M. M., Botchan, M. R., & Cline, T. W. (2010). Grainyhead and Zelda compete for binding to the promoters of the earliest-expressed Drosophila genes. Developmental biology, 345(2), 248–255. https://doi.org/10.1016/j.ydbio.2010.06.026
Harrison, M. M., Li, X. Y., Kaplan, T., Botchan, M. R., & Eisen, M. B. (2011). Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS genetics, 7(10), e1002266. https://doi.org/10.1371/journal.pgen.1002266
McDaniel, S. L., Gibson, T. J., Schulz, K. N., Fernandez Garcia, M., Nevil, M., Jain, S. U., Lewis, P. W., Zaret, K. S., & Harrison, M. M. (2019). Continued Activity of the Pioneer Factor Zelda Is Required to Drive Zygotic Genome Activation. Molecular cell, 74(1), 185–195.e4. https://doi.org/10.1016/j.molcel.2019.01.014
McDaniel, S. L., & Harrison, M. M. (2019). Optogenetic Inactivation of Transcription Factors in the Early Embryo of Drosophila. Bio-protocol, 9(13), e3296. https://doi.org/10.21769/BioProtoc.3296
Larson, E.D., Komori, H., Gibson, T.J. et al. Cell-type-specific chromatin occupancy by the pioneer factor Zelda drives key developmental transitions in Drosophila. Nat Commun 12, 7153 (2021). https://doi.org/10.1038/s41467-021-27506-y
Related Episodes
Pioneer Transcription Factors and Their Influence on Chromatin Structure (Ken Zaret)
Contact
Epigenetics Podcast on Twitter
Epigenetics Podcast on Instagram
Epigenetics Podcast on Mastodon
Active Motif on Twitter
Active Motif on LinkedIn
Email: podcast@activemotif.com
Duration:00:41:38
Epigenetics in Human Malaria Parasites (Elena Gómez-Diaz)
11/17/2022
In this episode of the Epigenetics Podcast, we caught up with Elena Gomez-Diaz from the Institute of Parasitology and Biomedicine López-Neyra at the Spanish National Research Council. She share with us her work on the Epigenetics in Human Malaria Parasites.
Elena Gómez-Díaz and her team are focusing on understanding how epigenetic processes are implicated in host-parasite interactions by regulating gene expression in the model of malaria. The team has started to investigate and uncover layers of chromatin regulation that control developmental transitions in Plasmodium falciparum, especially in the parts of the life cycle that take place in the mosquito. Furthermore, the lab has investigated epigenetic changes that are present in malaria-infected Anopheles mosquitos, this led to the identification of cis-regulatory elements and enhancer-promoter networks in response to infection.
References
Gómez-Díaz E, Rivero A, Chandre F, Corces VG. Insights into the epigenomic landscape of the human malaria vector Anopheles gambiae. Front Genet. 2014 Aug 15;5:277. doi: 10.3389/fgene.2014.00277. PMID: 25177345; PMCID: PMC4133732.
Gómez-Díaz, E., Yerbanga, R., Lefèvre, T. et al. Epigenetic regulation of Plasmodium falciparum clonally variant gene expression during development in Anopheles gambiae. Sci Rep 7, 40655 (2017). https://doi.org/10.1038/srep40655
José Luis Ruiz, Juan J Tena, Cristina Bancells, Alfred Cortés, José Luis Gómez-Skarmeta, Elena Gómez-Díaz, Characterization of the accessible genome in the human malaria parasite. Plasmodium falciparum, Nucleic Acids Research, Volume 46, Issue 18, 12 October 2018, Pages 9414–9431, https://doi.org/10.1093/nar/gky643
Women in Malaria 2021: A Conference Premier. (2021). Trends in Parasitology, 37(7), 573–580. https://doi.org/10.1016/j.pt.2021.04.001
Twitter Account: https://twitter.com/womeninmalaria
Related Episodes
Multiple challenges of CUT&Tag (Cassidee McDonough, Kyle Tanguay)
ATAC-Seq, scATAC-Seq and Chromatin Dynamics in Single-Cells (Jason Buenrostro)
Contact
Epigenetics Podcast on Twitter
Epigenetics Podcast on Instagram
Epigenetics Podcast on Mastodon
Active Motif on Twitter
Active Motif on LinkedIn
Email: podcast@activemotif.com
Duration:00:37:22
Bioinformatic Analysis in Epigenetics Research (Nick Pervolarakis)
11/3/2022
In this episode of the Epigenetics Podcast, we caught up with Nick Pervolarakis from Active Motif to talk about bioinformatic analysis in epigenetics research.
While many “bench scientists” are familiar with the workflows of ChIP-Seq, ATAC-Seq and CUT&Tag, and even the preparation and analysis of the libraries, the steps between sequencing and fully analyzed data is sometimes thought of as a mystery known only to bioinformatic experts. Most of us have some understanding that the raw data is usually in a file format called a FASTQ. But how do we get from FASTQ files to peaks on a genome browser? This Podcast Episode will provide a peek behind the curtain of the informatic analysis we perform at Active Motif, as part of our end-to-end epigenetic services.
References
Life in the FASTQ Lane
Bioinformatics Resource Center
Epigenetic Services
Related Episodes
Multiple challenges of ATAC-Seq, Points to Consider (Yuan Xue)
Multiple challenges of CUT&Tag (Cassidee McDonough, Kyle Tanguay)
Multiple Challenges in ChIP (Adam Blattler)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: podcast@activemotif.com
c8dqseb1h2Zyf2blC15qkyPgu9sB5stin27nqhzP
Duration:00:38:31
Anchor-Based Bisulfite Sequencing (Ben Delatte)
10/20/2022
In this episode of the Epigenetics Podcast, we caught up with Ben Delatte Research Scientist at Active Motif to talk about his work on Anchor Based Bisulfite Sequencing.
Whole Genome Bisulfite Sequencing (WGBS) is the current standard for DNA methylation profiling. However, this approach is costly as it requires sequencing coverage over the entire genome. Here we introduce Anchor-Based Bisulfite Sequencing (ABBS). ABBS captures accurate DNA methylation information in Escherichia coli and mammals, while requiring up to 10 times fewer sequencing reads than WGBS. ABBS interrogates the entire genome and is not restricted to the CpG islands assayed by methods like Reduced Representation Bisulfite Sequencing (RRBS). The ABBS protocol is simple and can be performed in a single day.
References
Chapin, N., Fernandez, J., Poole, J. et al. Anchor-based bisulfite sequencing determines genome-wide DNA methylation. Commun Biol 5, 596 (2022). https://doi.org/10.1038/s42003-022-03543-1
Related Episodes
The Role of DNA Methylation in Epilepsy (Katja Kobow)
DNA Methylation and Mammalian Development (Déborah Bourc'his)
Effects of DNA Methylation on Diabetes (Charlotte Ling)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: podcast@activemotif.com
Duration:00:32:21
Enhancer Communities in Adipocyte Differentiation (Susanne Mandrup)
10/6/2022
In this episode of the Epigenetics Podcast, we caught up with Susanne Mandrup from the University of Southern Denmark to talk about her work on the role of enhancer communities in adipocyte differentiation.
The Laboratory of Susanne Mandrup focuses on the effect of enhancers and enhancer communities on the differentiation of mesenchymal stem cell into adipocytes and osteoblasts. The team has shown that there is significant cross-talk between enhancers and that these form communities of highly interconnected enhancers. Inactive enhancers are then activated by association with these pre-existing enhancer networks to facilitate gene expression in adipocyte differentiation.
References
Siersbæk R, Rabiee A, Nielsen R, Sidoli S, Traynor S, Loft A, Poulsen LC, Rogowska-Wrzesinska A, Jensen ON, Mandrup S. Transcription factor cooperativity in early adipogenic hotspots and super-enhancers. Cell Rep. 2014 Jun 12;7(5):1443-1455. doi: 10.1016/j.celrep.2014.04.042. Epub 2014 May 22. PMID: 24857652.
Siersbæk R, Baek S, Rabiee A, Nielsen R, Traynor S, Clark N, Sandelin A, Jensen ON, Sung MH, Hager GL, Mandrup S. Molecular architecture of transcription factor hotspots in early adipogenesis. Cell Rep. 2014 Jun 12;7(5):1434-1442. doi: 10.1016/j.celrep.2014.04.043. Epub 2014 May 22. PMID: 24857666; PMCID: PMC6360525.
Siersbæk R, Madsen JGS, Javierre BM, Nielsen R, Bagge EK, Cairns J, Wingett SW, Traynor S, Spivakov M, Fraser P, Mandrup S. Dynamic Rewiring of Promoter-Anchored Chromatin Loops during Adipocyte Differentiation. Mol Cell. 2017 May 4;66(3):420-435.e5. doi: 10.1016/j.molcel.2017.04.010. PMID: 28475875.
Rauch, A., Haakonsson, A.K., Madsen, J.G.S. et al. Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nat Genet 51, 716–727 (2019). https://doi.org/10.1038/s41588-019-0359-1
Madsen, J.G.S., Madsen, M.S., Rauch, A. et al. Highly interconnected enhancer communities control lineage-determining genes in human mesenchymal stem cells. Nat Genet 52, 1227–1238 (2020). https://doi.org/10.1038/s41588-020-0709-z
Related Episodes
Ultraconserved Enhancers and Enhancer Redundancy (Diane Dickel)
Effects of DNA Methylation on Diabetes (Charlotte Ling)
Epigenetic Regulation of Stem Cell Self-Renewal and Differentiation (Peggy Goodell)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: podcast@activemotif.com
Duration:00:27:13
Transposable Elements in Gene Regulation and Evolution (Marco Trizzino)
9/22/2022
In this episode of the Epigenetics Podcast, we caught up with Marco Trizzino from Thomas Jefferson University to talk about his work on transposable elements in gene regulation and evolution.
Marco Trizzino and his team focus on characterising transposable elements and how they affect gene regulation, evolution and ageing in primates. They could show that transposable elements that integrated into the genome turned into regulatory elements in the genome, like enhancers. They then contribute to regulation of processes like development or ageing, which could be among those factors that lead to increased brain development or longevity in great apes.
References
Trizzino M, Park Y, Holsbach-Beltrame M, Aracena K, Mika K, Caliskan M, Perry GH, Lynch VJ, Brown CD. Transposable elements are the primary source of novelty in primate gene regulation. Genome Res. 2017 Oct;27(10):1623-1633. doi: 10.1101/gr.218149.116. Epub 2017 Aug 30. PMID: 28855262; PMCID: PMC5630026.
Pagliaroli L, Porazzi P, Curtis AT, Scopa C, Mikkers HMM, Freund C, Daxinger L, Deliard S, Welsh SA, Offley S, Ott CA, Calabretta B, Brugmann SA, Santen GWE, Trizzino M. Inability to switch from ARID1A-BAF to ARID1B-BAF impairs exit from pluripotency and commitment towards neural crest formation in ARID1B-related neurodevelopmental disorders. Nat Commun. 2021 Nov 9;12(1):6469. doi: 10.1038/s41467-021-26810-x. PMID: 34753942; PMCID: PMC8578637.
Tejada-Martinez D, Avelar RA, Lopes I, Zhang B, Novoa G, de Magalhães JP, Trizzino M. Positive Selection and Enhancer Evolution Shaped Lifespan and Body Mass in Great Apes. Mol Biol Evol. 2022 Feb 3;39(2):msab369. doi: 10.1093/molbev/msab369. PMID: 34971383; PMCID: PMC8837823.
Young transposable elements rewired gene regulatory networks in human and chimpanzee hippocampal intermediate progenitors. Sruti Patoori, Samantha M. Barnada, Christopher Large, John I. Murray, Marco Trizzino. bioRxiv 2021.11.24.469877; doi: https://doi.org/10.1101/2021.11.24.469877
Related Episodes
Enhancer-Promoter Interactions During Development (Yad Ghavi-Helm)
Chromatin Organization During Development and Disease (Marieke Oudelaar)
Ultraconserved Enhancers and Enhancer Redundancy (Diane Dickel)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: podcast@activemotif.com
Duration:00:38:05
Hydroxymethylation Landscape in Immunecells (Marcela Sjöberg)
9/8/2022
In this episode of the Epigenetics Podcast, we caught up with Marcela Sjöberg from the Pontificia Universidad Católica de Chile to talk about her work on the hydroxymethylation landscape in immune cells.
At the beginning of her career Marcela Sjöberg worked on Aurora B and Polycomb and how modifications placed by them modulate the binding of RNA Pol II. Later, her focus shifted to examine cytosine DNA methylation and hydroxymethylation changes in immune cells and how the epigenetic state of these marks varies between individuals and is reprogrammed for Metastable Epialleles in mouse. More recently, the laboratory is interested on how hydroxymethylation of transcription factor binding motifs influence binding and activity of the respective transcription factors in immune cells.
References
Sabbattini, P., Sjoberg, M., Nikic, S., Frangini, A., Holmqvist, P.-H., Kunowska, N., Carroll, T., Brookes, E., Arthur, S. J., Pombo, A., & Dillon, N. (2014). An H3K9/S10 methyl-phospho switch modulates Polycomb and Pol II binding at repressed genes during differentiation. Molecular Biology of the Cell, 25(6), 904–915. https://doi.org/10.1091/mbc.e13-10-0628
Kazachenka, A., Bertozzi, T. M., Sjoberg-Herrera, M. K., Walker, N., Gardner, J., Gunning, R., Pahita, E., Adams, S., Adams, D., & Ferguson-Smith, A. C. (2018). Identification, Characterization, and Heritability of Murine Metastable Epialleles: Implications for Non-genetic Inheritance. Cell, 175(5), 1259-1271.e13. https://doi.org/10.1016/j.cell.2018.09.043
Westoby, J., Herrera, M.S., Ferguson-Smith, A.C. et al. Simulation-based benchmarking of isoform quantification in single-cell RNA-seq. Genome Biol 19, 191 (2018). https://doi.org/10.1186/s13059-018-1571-5
Viner, C., Johnson, J., Walker, N., Shi, H., Sjöberg, M., Adams, D. J., Ferguson-Smith, A. C., Bailey, T. L., & Hoffman, M. M. (2016). Modeling methyl-sensitive transcription factor motifs with an expanded epigenetic alphabet [Preprint]. Bioinformatics. https://doi.org/10.1101/043794
Related Episodes
The Role of DNA Methylation in Epilepsy (Katja Kobow)
DNA Methylation and Mammalian Development (Déborah Bourc'his)
Effects of DNA Methylation on Chromatin Structure and Transcription (Dirk Schübeler)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: podcast@activemotif.com
Duration:00:38:14
Single Cell Epigenomics in Neuronal Development (Tim Petros)
8/25/2022
In this episode of the Epigenetics Podcast, we caught up with Tim Petros from the Eunice Kennedy Shriver National Institute of Child Health and Human Development at the NIH to talk about his work on Single Cell Epigenomics in Neuronal Development.
The Petros lab focuses on “interneurons”, their diversity and how environmental signals interact to generate this diversity. This subgroup of neurons comprise about 20% of neutrons in the brain, however, they are the primary source of inhibition. Furthermore, interneurons are critical components in modulating information flow throughout the nervous system. The Petros lab seeks to uncover the genetic programs that lead to the incredible diversity in interneurons, as well as how the local environment influences this process.
To lay a foundation for this and to provide a data-base for other researchers the Petros lab generated an epigenome atlas of neural progenitor cells of the mouse brain. This data includes scRNA-Seq, snATAC-Seq, CUT&Tag (H3K4me3, H3K27me3), CUT&RUN (H3K27ac), Hi-C and Capture-C. This data can be downloaded at the link below:
https://www.nichd.nih.gov/research/atNICHD/Investigators/petros/data-sharing
References
Datasets: https://www.nichd.nih.gov/research/atNICHD/Investigators/petros/data-sharing
Quattrocolo G, Fishell G, Petros TJ. Heterotopic Transplantations Reveal Environmental Influences on Interneuron Diversity and Maturation. Cell Rep. 2017 Oct 17;21(3):721-731. doi: 10.1016/j.celrep.2017.09.075. PMID: 29045839; PMCID: PMC5662128.
Dongjin R Lee, Christopher Rhodes, Apratim Mitra, Yajun Zhang, Dragan Maric, Ryan K Dale, Timothy J Petros (2022) Transcriptional heterogeneity of ventricular zone cells in the ganglionic eminences of the mouse forebrain eLife 11:e71864 https://doi.org/10.7554/eLife.71864
Rhodes, C. T., Thompson, J. J., Mitra, A., Asokumar, D., Lee, D. R., Lee, D. J., Zhang, Y., Jason, E., Dale, R. K., Rocha, P. P., & Petros, T. J. (2022). An epigenome atlas of neural progenitors within the embryonic mouse forebrain. Nature communications, 13(1), 4196. https://doi.org/10.1038/s41467-022-31793-4
Related Episodes
The Role of Histone Dopaminylation and Serotinylation in Neuronal Plasticity (Ian Maze)
Single-Cell Technologies using Microfluidics (Ben Hindson, CSO of 10x Genomics)
The Role of DNA Methylation in Epilepsy (Katja Kobow)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: podcast@activemotif.com
Duration:00:37:55