
The Dr. Data Show with Eric Siegel
Technology Podcasts
Eric Siegel covers why machine learning is the most important, most potent, and most misunderstood technology. And did I mention most important? Yup, it’s the most important – yet most new ML projects fail to deliver value. This podcast will help you: - Make sure machine learning is effective and valuable - Catch common machine learning oversights - Understand ethical pitfalls – concretely - Sniff out all the ”artificial intelligence” malarky This podcast is for both data scientists and business leaders of all kinds – such as executives, directors, line of business managers, and consultants – who are involved in or affected by the deployment of machine learning. To get machine learning to work, both the tech and business sides must make an effort to reach across wide chasm. About the host: Eric Siegel, Ph.D., is a leading consultant and former Columbia University professor who helps companies deploy machine learning. He is the founder of the long-running Machine Learning Week conference series and its new sister, Generative AI Applications Summit, the instructor of the acclaimed online course “Machine Learning Leadership and Practice – End-to-End Mastery,” executive editor of The Machine Learning Times, and a frequent keynote speaker. He wrote the bestselling ”Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die,” which has been used in courses at hundreds of universities, as well as ”The AI Playbook: Mastering the Rare Art of Machine Learning Deployment.” Eric’s interdisciplinary work bridges the stubborn technology/business gap. At Columbia, he won the Distinguished Faculty award when teaching the graduate *computer science* courses in ML and AI. Later, he served as a *business school* professor at UVA Darden. Eric has appeared on numerous media channels, including Bloomberg, National Geographic, and NPR, and has published in Newsweek, HBR, SciAm blog, WaPo, WSJ, and more. https://www.machinelearningweek.com http://www.bizML.com http://www.machinelearning.courses http://www.thepredictionbook.com
Location:
United States
Description:
Eric Siegel covers why machine learning is the most important, most potent, and most misunderstood technology. And did I mention most important? Yup, it’s the most important – yet most new ML projects fail to deliver value. This podcast will help you: - Make sure machine learning is effective and valuable - Catch common machine learning oversights - Understand ethical pitfalls – concretely - Sniff out all the ”artificial intelligence” malarky This podcast is for both data scientists and business leaders of all kinds – such as executives, directors, line of business managers, and consultants – who are involved in or affected by the deployment of machine learning. To get machine learning to work, both the tech and business sides must make an effort to reach across wide chasm. About the host: Eric Siegel, Ph.D., is a leading consultant and former Columbia University professor who helps companies deploy machine learning. He is the founder of the long-running Machine Learning Week conference series and its new sister, Generative AI Applications Summit, the instructor of the acclaimed online course “Machine Learning Leadership and Practice – End-to-End Mastery,” executive editor of The Machine Learning Times, and a frequent keynote speaker. He wrote the bestselling ”Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die,” which has been used in courses at hundreds of universities, as well as ”The AI Playbook: Mastering the Rare Art of Machine Learning Deployment.” Eric’s interdisciplinary work bridges the stubborn technology/business gap. At Columbia, he won the Distinguished Faculty award when teaching the graduate *computer science* courses in ML and AI. Later, he served as a *business school* professor at UVA Darden. Eric has appeared on numerous media channels, including Bloomberg, National Geographic, and NPR, and has published in Newsweek, HBR, SciAm blog, WaPo, WSJ, and more. https://www.machinelearningweek.com http://www.bizML.com http://www.machinelearning.courses http://www.thepredictionbook.com
Language:
English
Website:
https://www.doctordatashow.com
Predictive AI Usually Fails Because It’s Not Usually Valuated (article)
Duration:00:03:46
Predictive AI Only Works If Stakeholders Tune This Dial (article)
Duration:00:04:26
AI Drives Alphabet’s Moonshot To Save The World’s Electrical Grid (article)
Duration:00:06:39
To Deploy Predictive AI, You Must Navigate These Tradeoffs (article)
Duration:00:03:53
Predictive AI Meets GenAI: Michael Griebe on How to Balance between ML Models and LLMs in a Data Science Career
Duration:00:53:21
How Generative AI Helps Predictive AI (article)
Duration:00:05:26
The Quant's Dilemma: Subjectivity In Predictive AI's Value (article)
Duration:00:05:51
The Great AI Myth: These 3 Misconceptions Fuel It (article)
Duration:00:08:12
The 3 Things You Need To Know About Predictive AI (article)
Duration:00:04:22
Why You Must Twist Your Data Scientist's Arm To Estimate AI's Value (article)
Duration:00:05:34
The Rise Of Large Database Models (article)
Duration:00:08:04
3 Predictions For Predictive AI In 2025 (article)
Duration:00:05:51
Alphabet Uses AI To Rush First Responders To Wildfires (article)
Duration:00:06:57
NotebookLM on how Gooder AI will solve the value-capture crisis
Duration:00:19:48
"Predictive Analytics" in ten minutes
Duration:00:10:31
"The AI Playbook" in fifteen minutes
Duration:00:15:30
Forbes Article: Meta’s New GenAI Is Theatrical. Here’s How To Make It Valuable
Duration:00:07:36
Forbes Article: Artificial General Intelligence Is Pure Hype
Duration:00:09:24
Forbes Article: AI Success Depends On How You Choose This One Number
Duration:00:09:09
Where FICO Gets Its Data for Screening Two-Thirds of All Card Transactions
Duration:00:16:50